数据结构与算法——基本概念

First Post:

Last Update:

Word Count:
423

Read Time:
1 min

主要学习了数据结构与算法的基本概念,时间复杂度等

以下为求最大子序列和的两种优化方法:

分而治之:(NlogN)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
int Max3( int A, int B, int C )
{ /* 返回3个整数中的最大值 */
return A > B ? A > C ? A : C : B > C ? B : C;
}

int DivideAndConquer( int List[], int left, int right )
{ /* 分治法求List[left]到List[right]的最大子列和 */
int MaxLeftSum, MaxRightSum; /* 存放左右子问题的解 */
int MaxLeftBorderSum, MaxRightBorderSum; /*存放跨分界线的结果*/
int LeftBorderSum, RightBorderSum;
int center, i;

if( left == right ) /* 递归的终止条件,子列只有1个数字 */
if( List[left] > 0 ) return List[left];
else return 0;

/* 下面是"分"的过程 */
center = ( left + right ) / 2; /* 找到中分点 */
/* 递归求得两边子列的最大和 */
MaxLeftSum = DivideAndConquer( List, left, center );
MaxRightSum = DivideAndConquer( List, center+1, right );

/* 下面求跨分界线的最大子列和 */
MaxLeftBorderSum = 0; LeftBorderSum = 0;
for( i = center; i >= left; i-- ) { /* 从中线向左扫描 */
LeftBorderSum += List[i];
if( LeftBorderSum > MaxLeftBorderSum )
MaxLeftBorderSum = LeftBorderSum;
} /* 左边扫描结束 */
MaxRightBorderSum = 0; RightBorderSum = 0;
for( i = center + 1; i <= right; i++ ) { /* 从中线向右扫描 */
RightBorderSum += List[i];
if( RightBorderSum > MaxRightBorderSum )
MaxRightBorderSum = RightBorderSum;
} /* 右边扫描结束 */

/* 下面返回"治"的结果 */
return Max3( MaxLeftSum, MaxRightSum,
MaxLeftBorderSum + MaxRightBorderSum );
}

int MaxSubseqSum3( int List[], int N )
{ /* 保持与前2种算法相同的函数接口 */
return DivideAndConquer( List, 0, N-1 );
}

在线处理:(N)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
int MaxSubseqSum4( int List[], int N )
{ int ThisSum, MaxSum;
int i;

ThisSum = MaxSum = 0;
for( i = 0; i < N; i++ ) {
ThisSum += List[i]; /* 向右累加 */
if( ThisSum > MaxSum )
MaxSum = ThisSum; /* 发现更大和则更新当前结果 */
else if( ThisSum < 0 ) /* 如果当前子列和为负 */
ThisSum = 0; /* 则不可能使后面的部分和增大,抛弃之 */
}
return MaxSum;
}